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Abstract--Consideration is given to a developed turbulent flow in a circular tube with an infinite sequence 
of circumferential fins formed by equidistant diaphragms. For describing the turbulent flow, use is made 
of the two-parametric dissipative model of turbulence and of the wall function method. Numerical 
calculation of flow parameters and temperature is based on the computational procedure suggested earlier. 
The computational algorithm is modernized so that it allows a direct employment of Reynolds number as 
an input parameter rather than its determination from the predicted results, as is the case in the above- 
mentioned procedure. A new algorithm to solve the thermal problem is proposed. The calculated results 
are presented in the form of flow and temperature fields and distributed parameters over the tube surface. 
The influence of geometry and flow parameters on the dynamic and thermal characteristics of the flow are 

analyzed. 

I N T R O D U C T I O N  

THERE exist numerous  examples of  using channels  
with s treamwise periodic var ia t ions  in the cross- 
sectional area. The flows in such channels  are 
encountered in heat  exchangers,  in hydropneumo-  
t r anspor t  systems, in the technology of  manufac tur -  
ing semiconduct ing ins t ruments  and microcircuits,  
in labyr inth  packing and lubricat ion devices, and in 
o ther  technical  applications_ Some cases of  calculat- 
ing periodic laminar  flows are presented in refs. 
[1-4]. The predict ion of  a tu rbulen t  flow in a tube 
with a coaxial system of discs is reported in ref_ [5] As 
regards heat exchangers,  of  considerable  interest is 
a flow in a channel  with a system of  flat fins located 
a long the heat  t ransfer  surface and oriented per- 
pendicularly to the flow, or a flow in a tube with a 
system of  circumferential  fins~zliaphragms located 
uniformly a long the flow axis x. 

Let us consider  some special features of  the problem 
of  calculat ing periodic flows. With  L to denote  the 
distance between the fins~zliaphragms, the condi t ion  
of  periodicity in the var ia t ions  of  the cross-sectional 
area will be wri t ten as 

A ( x )  = A ( x  + L)  = A ( x  + 2L) . . . .  . 

Here A ( x )  = rtR 2 holds for the entire tube except for 
the sections with d iaphragms  in which A(xa)  = rtR'-O 2 

where 0 = R/Ra,  Rd is the inner  radius of  a d iaphragm.  
A distinctive feature of  periodic flows is the absence 

of  parabol ic  propert ies  character is t ic  of  a developed 
tube flow. Instead of  this property,  periodicity con- 
di t ions appear  which consist  in the fact that  the vel- 
ocity field is the same in the sections d is tant  L apar t  ' 

u ( x , y )  = u ( x + L , y )  = u ( x + 2 L ,  y) . . . .  , 

v(x,  y)  = v (x  + L,  y)  = v (x  + 2L,  y)  . . . .  . 

The pressure variat ion is of  dual  character .  On the 
one hand,  the directed character  of  flow stipulates, on 
the average, a l inear lengthwise decrease in pressure, 
while, on the other  hand,  the elliptical propert ies  of 
flow within a periodic module  of  length L induce 
the pressure var ia t ion along the radius in each flow 
section. The above ci rcumstance enables the rep- 
resentat ion of  pressure as a sum of  two terms : 

p(x ,  y)  = - / 3 x  + P(x ,  y).  ( 1 ) 

Here, the quant i ty /3  is control led by the integral flow 
rate in the tube, whereas the funct ion P(x ,  y), associ- 
ated with the local mot ion,  is governed by the same 
condi t ions  of  periodicity as the velocity componen t s  

P(x ,  y)  = P ( x  + L, y)  = P ( x  + 2L, y)  . . . .  . 

The method for predict ing periodic flows with ref- 
erence to a laminar  flow was worked out  by Pa t anka r  
et al. [6]. The method can be applied for two ways of  
non-dimens ional iza t ion  connected with the choice of  
characterist ic  velocity. In the first of  them, the charac- 
teristic velocity is taken to be the quant i ty  P/R and 
dimensionless  variables are in t roduced by the equa- 
t ions 

ti, t ; = ( u * , v * ) ( R / v ) ;  P = P * ( R 2 / v 2 ) ;  

/~= /3.(R3/pv'-);  ~c= k . ( R 2 / v 2 ) ;  

g = ~,*(R%,-').  (:2) 

Here and hereafter,  the superscript  (*) denotes  dimen- 
sional quantit ies.  With  the non-dimensional iza t ion  
employed,  the transfer  coefficient in the m o m e n t u m  
equat ions  is determined by the relat ion F = 1 + v,/v_ 

The dimensionless  pressure g rad ien t /q  is a pa ramete r  
of  the problem. The Reynolds number  based on the 
mean  flow velocity, Re = u*R/v,  is a dependent  quan-  
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N O M E N C L A T U R E  

A cross-sectional area 
a 'p, b coefficients ofdiscrete equations (10), (18) 
c ~, c ,_, c,. coefficients in approximated 

turbulent transport equations 
c,, specific heat at constant pressure 
E constant in near-wall, E = 8.8 
F turbulent energy generation rate 
G relative decrease in mean-weighted 

temperature of module 
h local heat transfer coefficient, q(T_,,,- Th) 
k turbulent kinetic energy 
L dimensionless pitch of fins, L*/R 
Nu local Nusselt number, hR/2 
P periodic pressure 
q wall heat flux 
R tube radius 
Ro inner radius of circumferential fin 

(diaphragm) 
Re Reynolds number in tube flow based on 

bulk velocity and tube radius, u*R/v 
S s o u r c e  t e l T n s  

T(x , y )  dimensional temperature 
Tb(x) mean-weighted tempcrature in 

cross-section 

volp control volume. 

Greek symbols 

F 
Fo 

AA 

K 

2 
A 

Y 

p 
O k , O'r 

4, 

averaged pressure gradient, equation 
(4) 
effective diffusion coefficient 
effective thermal diffusion 
coefficient 
side area of control volume 
dissipation rate of turbulent kinetic 
energy 
relative size of fin, Rd/R 
dimensionless temperature, equation 
(12) 
yon Karman constant 
thermal conductivity of fluid 
dimensionless mean-weighted 
temperature gradient 
kinematic viscosity coefficient 
density 
effective turbulent Prandtl number for k 
and e., respectively 
dependent variables (u, l,, k, and e.). 

x, y axial and radial coordinate, respectively 
u, c dimensionless velocity component along 

axes x, y, respectively 
u*, c*, p*, /3*, k*, e,*, L*, x* dimensional 

parameters 
~7, f, P, [t, x c-, g,/7,, .'~ dimensionless quantities 

introduced by formulae (2) 
fi, l~,/5 [~,/~, g, £, £ dimensionless quantities 

introduced by formulae (3) 

Superscripts 
* preliminarily predicted values 
('), C) correction parameters. 

Subscripts 
av cross-section values 
P, E, W, N, S values at grid nodes 
t turbulent quantities 
w wall. 

tity and is found from the predicted values of the 
velocity 

Re = a°v° dy = /~av" 

The conversion into the quantities non-dimen- 
sionahzed through the division by the mean flow vel- 
ocity is performed by the relations 

f l = ~ / R e  2; u = f f / R e ;  v = 6 / R e ;  P =  P/Re'-; 

k =  rKRe 2; E=g/Re  ~; v, = qt/Re_ 

The other method of non-dimensionalization 
involves the selection of the quantity (~*R/p) ~/'- as the 
characteristic velocity. In this case, the dimensionless 
averaged pressure gradient becomes equal to unity, 
/~ = 1. The rest of the dimensionless variables are 
introduced with the aid of the relations 

fi, f = (u, v*)/(•*R/p) '/'- ; # = P*/(fl*R/p) ; 

= ~ * / ( / ~ * R / p ) ;  ~ = ~* / ( ( /~*R/p)~ / ' - /R) .  (3)  

The independent parameter is the modified 
Reynolds number R~"e = ([~*R/p)IJ2R/v. The dynamic 
transfer coefficient is determined by the relation 
F = I/Re(1 +v,/v). 

The equations which are used for conversion into 
the parameters non-dimensionalized through division 
by the mean flow velocity, have the form 

fo' 
k = £ ~ '  ~, = e:/~ 9 ' 2  v, = ~ ,~ ' / - ' .  

In both of these cases of non-dimensionalization, 
either the standard algorithm SIMPLE or its revised 
version is used to calculate the fields of the velocities 
u, v and the function of the pressure P_ 

Obviously, the method based on computation from 
the quantities, that have no clear physical meaning, 
with a subsequent conversion into the traditional vari- 
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ables is practically inconvenient. Moreover,  there is a 
certain difficulty in selecting the input parameter / )  or 
Re in order to obtain the desired Reynolds number. 
Following is the method of  solution which employs a 
natural non-dimensionalization of  variables through 
division by the characteristic mean flow velocity. 

D Y N A M I C  P R O B L E M  

The periodic character of  the flow makes it possible 
to restrict the study to the flow within a single periodic 
module of  the axial size L. As a computat ional  
domain, use will be made of  the region confined 
between the axis, tube wall and two sections running 
through the middle of  the distance between two suc- 
cessive fins~:tiaphragms. 

Utilizing the k-~ turbulence model in the cylindrical 
coordinate system, the system of equations will be 
written as 

~u 1 0vv 
~3x + ~ = 0, (4) 

V C I '  

v " / L W j  . _ 

~P 
= f l - ~  +S,,, (5) 

( ' X  

I ~ (~ , ~, 
y " a . r / j  + 

OP 
= - +S,,, (6) (??,, 

( , - y u k - -  
_ O" k 

+ 0 ~  y vk-a~-- ~r  = S k ,  (7) 

- ) '  u ~ - - - -  

l '  0"~ 

+ y r e - - - -  = S~, (8) 

where F = l /Re+v,  is the transfer coefficient and 
v, = c,,k'-/e is the eddy viscosity_ 

The source terms are obtained from the equations 

(? [" O u'~ 1 ~ { O t, "~ 
S , , = ~  [ - - I F  + L),F (?,,,) ; 

cx \ Ox/ v Ov 

o ( r ° " )  + ,_ o / ,,: 
oxk  a),) y ),- 

Sk = F - e ;  S~=k(CtF-c ,_~) ;  

F= r ( Lkaxl kay/+ + ~ + ax} j- 

The following values of  the turbulence constants 
are adopted : c, = 0.09, c, = 1.44, c, = 1.92, ak = 1.0. 
and a,: = 1.3. 

I n  writing the equations, the linear dimensions x, 
y, L are related to the tube radius R and the velocities 
u, r are related to the mean mass velocity u*~. The 
local pressure P, the averaged longitudinal pressure 
gradient fl, the transfer coefficient F, the turbulent 
energy k, and the dissipation rate of  turbulent energy 

are normalized, by pu~,-', pu~,~/R, u*vR, u~,~, pu~'/R, 
respectively_ 

The system of equations is solved under the fol- 
lowing periodicity conditions : 

~b(0,.r) = (b(L,y), q5 = u,c, P ,k ,E:  

conditions on the symmetry axis : 

c = O :  P~b/?.t'=O, 4)=u,P,k,~:  

and under the boundary conditions on the solid walls 
formulated by the wall function method. 

To determine the coefficient fl, the integral con- 
tinuity equation is used 

I ' ( 1 - u).t' dy = 0, (9) 
} 

which can be controlled in an arbitrary cross-section 
of  the module. 

Finite-difference equations are set up by the control 
volume method, as a result of  which the differential 
transfer equations are reduced to an algebraic form 

where the coefficients a* and the source term s,~ are 
evaluated, depending on the adopted approximation 
of  convection and diffusion terms, by the best, known 
at this time, grid parameters from the previous iter- 
ation scheme. In the bordering volumes, the flow on 
the edges coinciding with the symmetry axis goes to 
zero, whereas that on the edges that lie on the solid 
walls is found by the wall function method, viz. : 

the diffusion flux to the wall is determined in accord- 
ance with the expression 

F (nu'~ = h-u,,c,! 4k~2/ln (Ev~,Rec,! 4k~2) 
~ n / , ,  

where )'p is the distance from the node to the wall, 
~: = 0.4 and E = 8.8 are constants in the logarithm of 
the velocity ; 

the turbulent kinetic energy diffusion flux to the 
wall is assumed to be equal to zero (F, ?k/~nn)~ = 0, 
whereas the source term is determined from the equa- 
tion 

f " e d)' = c~. "~k~,"-/h - In (Er,,Re c ! 4k.~, "-) 

the turbulent kinetic energy dissipation rate is 
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obtained according to the expression 

ep = c,!14k91~l(xyp)_ 

The solution algorithm is set up by the SIMPLE 
method or its modification [4] the procedure of which 
is changed to suit the need for identifying the 
coefficient/7 in momentum equation (5)_ 

Let u*, v*, P*, and r* be the best known values of 
the velocity, elliptical pressure component, and of the 
streamwise pressure gradient at a given iteration step. 
The indicated grid values are corrected in such a way 
as to satisfy continuity equations in differential (4) and 
integral (10) forms. For this purpose, the correction 
relations are introduced : 

u = u * + u ' + u " ;  v = v * + v ' ;  P = P * + P ' ;  

/7 =/7"+/7'. 

The introduction of two corrections for the stream- 
wise velocity component reflects the dual character of 
the flow being formed by the action of both speci- 
fied averaged translational and local disturbances 
associated with periodic variations in the flow cross- 
sectional area. Just as in standard SIMPLE-type pro- 
cedures, the velocity corrections u' and v' are ex- 
pressed in terms of the appropriate differences of 
the corrections of the pressure component P',  which, 
in turn, are found from the Poisson difference equa- 
tion. The second velocity correction u" is calculated 
in terms of the correction to the gradient of the 
linear pressure component /7": u "=  voll,/ap,/7". The 
relation defining /7' is obtained by writing integral 
equation (9) in the difference 

/7" = ~ [(1 -- u*)A.4]/E k a-~-~ 

in which the summation is taken over all the nodes 
lying in the section chosen to check equation (9). Here, 
volp is the control volume and AA is the area of the 
control volume side in the lateral direction. 

THERMAL PROBLEM 

The temperature field is determined by solving the 
energy equation 

pc. + ya, .  

c9 [ OT'~ 
( l l )  

where 2at = 2 + 2 t  is the effective thermal conductivity 
coefficient. 

Let the tube walls be maintained at a constant tem- 
perature T = 7',. With the heat conduction process in 
the tube disregarded, the tube will be considered to be 
in isothermal conditions. For the class of periodic 
flows (as well as for developed tube flows), the dimen- 

sionless temperature is introduced 

T ( x , y )  - Tw 
0 (12) 

Tb (x) -- Tw ' 

which is invariant for a multitude of periodic modules_ 
Here, T+(x) is the local characteristic temperature 
taken reasonably to be that averaged over the cross- 
section with the streamwise velocity module used as a 
weight function 

(i3) 

Passing over in equation (11) to dimensionless vari- 
ables, the energy equation will be restated as 

y ~ t U O - F o ~ x ) + ~  vO-Fo~ y  = a ,  (14) 

where 

Fo = l / (Re  Pr) + vt/Prt, Pr = pcpv/2, 

Prt = pc,,vt/2L, 

,9o ,'~ dr~,(x)/dx 
o= 2rO Ux -U,-,) rb(:O_ rw 

+ T b ( x ) - T +  Fo dx ]" 

Introducing the notation 

d[Tb(X)- T,,,]/dx 
A(x) = 

Tb(x) -- Tw 

the right-hand side of equation (14) will be written in 
the form 

+A 2 -uA 0 + 2 r o A ~ .  O ~ [_~X 0X 

(15) 

Periodic changes in the variables 0 and F~ entail 
periodic variables in the parameters ° and A. An 
additional condition for finding the function A is pro- 
vided by means of integration over the cross-section 
area of equation (12) which has been multiplied by 
the velocity modulus u. In view of equation (13), the 
resultant relation is represented as 

;o' f0' Ouy dy = uy dy. (16) 

Equations (14) with the right-hand sides of equa- 
tions (15) and (16) serve for determining two un- 
known variables, viz. the dimensionless tempera- 
ture 0 and the specific longitudinal gradient of the 
mean-weighted temperature A. 

The statement of the boundary conditions for the 
temperature 0 reduces to a situation when, in inte- 
grating over the control volume during the numerical 
scheme construction, the temperature gradient on the 
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side coinciding with the wall is defined by the relation 

(~30)wc"/4k~/'-Oe-FO~fy - Fp 

for the horizontal walls and 

00 c,, ~p vp 
- F0 ~ + 0 A  - F ,  

for the vertical walls, where 

Fp = PrL In (EypRe C,!/4kll2)/K + f (l"I), 

f(Fl)  = 9.24(I-1 ~/4 -- 1)[1 +0.28 exp ( -  0_0071-I)], 

FI = Pr/Pr¢. 

To simultaneously solve equations (14) and (16), 
the algorithm can be used which was proposed in ref. 
[6] but somewhat modified to take into account the 
features of turbulent flow equations_ Another  algor- 
ithm can also be suggested, which is constructed simi- 
larly to the SIMPLE algorithm for the dynamic prob- 
lem in the following manner  : 

1. First, the grid temperature values are determined 
from equation (14), the right-hand side of which is 
calculated from the best known values of the function 
A*. The resulting temperature values are regarded as 
tentative and are denoted by 0". 

2. The actual values of the temperature 0 and func- 
tion A are related to the tentative values by the equa- 
tions 

Ap = A*+A~,; 0r, = 0"+0~,, (17) 

where 0' is expressed in terms of A' according to the 
finite-difference scheme obtained from equation (14) 

O'e = br, A~+bEA'E+bwA'w+QA- (18) 

In setting up equation (1 8), the terms involving the 
temperature values at adjoining nodes in the difference 
analogue of equation (14) are discarded (Y',-E.W.N,S 
a", 0t = 0)_ The coefficients in equation (18) are com- 
puted from the grid values of 0* and A*. 

3. A difference analogue is set up to determine the 
correction function A'. To this end, the values of 0 
from equation (17) are substituted into equation (16) 
with allowance for equation (18)_ This yields the 
relation 

in which integration is carried out over the flow cross- 
section. Equat ion (19) is ofs tandard  three-point form. 
It is solved through a periodic factorization by the 
algorithm stated in ref. [6]. 

4. The obtained values of A' are employed to cor- 
rect the values of A and 0 at the given iteration step 
in accordance with expressions (17) and (18). 

CALCULATED RESULTS 

Dynamic problem 
The flow pattern in a tube with annular  fins~lia- 
phragrns is governed by three criteria : the Reynolds 
number  Re = u*vR/v, the relative diameter of the 
annular  diaphragm 0 = Ra/R, and the relative fin 
spacing L = L*/R. Calculations were performed for 
the fixed Reynolds number  Re = l0 s and varied 
values of the geometric parameters: 0 = 0.9 and 
0 = 0 . 8 ,  L =  1.5, L =  1.0, L = 0 . 6 ,  a n d L = 0 . 3 .  

The flow character is defined by the stream-function 
fields plotted in Fig_ I_ The presented field fragments 
reflect the flow pattern in the near-wall region where 
the maximum flow deformation occurs owing to the 
flow past the fin. In the axial region, the streamlines 
actually remain straight just as in undisturbed tube 
flow and therefore they are not given in the figures_ 
The flow characteristics in the near-wall region are 
determined by the fin size 1 - 0  and the fin spacing 
L. A stalling flow past the fin in the near wake is 
accompanied by the formation of a toroidal vortex. 
In the case of small relative fin sizes (1 - O ) / L  < 0.07, 
the flow in the stalling zone is similar to the flow past 
a single fin. The effect of the fin situated downstream 
is virtually negligible (Fig. I(a))_ The vortex flow 
intensity, which can be inferred from the maximum 
stream function value at the vortex centre, is mainly 
governed by the fin size 1 - 0  and is little dependent 
on the fin spacing L. A decrease in the fin spacing L 
activates a vortex motion in the stagnant zone ahead 
of the fin (Figs. l(b), (e)). The vortex intensity and 
size increase with the decrease in L (see Fig. I(c)) and, 
when ( I - 0 ) / L  > 0.2~).25, the two vortexes in the 
stalling and stagnant zones converge (Figs. l(d), (f), 
(g), (h)). For small relative fin pitches (I -O) /L  > 0.3 
(Figs. I(d), (g), (h)), the entire flow can be con- 
ventionally divided into two parts: a vortex flow in 
the annular  space bounded by the tube surface and 
coaxial cylindrical surface enveloping the fin edges 
and a smooth flow in the cylindrical axial region. In 
the latter region, the flow resembles that in a tube of 
diameter 1 - 0 :  the warping of streamlines near the 
fin edges is insignificant. 

Consider the distribution patterns of the turbulence 
parameters ~: and E in the field of the calculated module 
in Figs. 2 and 3. The fin edge is a source of intense 
turbulent disturbances. Close to the fin edge, the peak 
of the turbulent energy k is produced which shifts 
upwards to the edge tip as the fin spacing L decreases. 
Relative to the undisturbed tube flow, the value of 
kmax grows by a few tens of times_ The value of km~ 
within the range of sizes under study increases almost 
proportionally to the fin height. At the same time, a 
variation in the fin spacing affects km,, little. An 
intense flow turbulization causes an increase of the 
turbulent viscosity vt. The turbulent viscosity isolines 
in the flow region, given in Fig. 3, reveal that, except 
for the fin edge and stalling flow region, the character 
of the turbulent viscosity alteration remains the same 



1090 L. ll SHUI] 

I 0 / 0 5  0 5 0 8  ~ 0 5 0 3  ~ 

1047 y 0 9  

0 8  " - - ' 0 4 p  ~ 
I 

( a )  

1.0 0 501 o Sot 0501 . 

o a 7 3  

0 02:5 0 50  0 75 I 0 0  125 150 

( e )  x 

--~'---~ 0 5005 O 5 0 8  05O3 ,o 5oo5~.~ 

09 

Y 
• o a5 ~ 

0 8  0 a 3 

0 01 ~ 5 0 l 5 0 0 7 5 I l 0 

( b )  • ( f )  

I 0 o 503 / o 5 0 3  O S O f l  

0 0 2 5  0 50  0 75 I O 0  

Y 

( c )  

0 9 0  

Y 

0 85 

0.8(3 

0 7 5  

IO0 
oso 

0 9 0  • / 

Oa9 
0 8 5 ,  ~ o a 7  

O8O • o a 4  - 

04~ 
07"5 , 

0 O I 01~ 013 0 4  015 

X 

I O0 
- -  0 5 0 3  O~ ~OI 0 5 0 1  ~ 0  ~0~ 

I .c~ o 5o 8 
0 9 5  ~ ~ > - - - " "  ,! : ;i ( ~ ' ~ ' - - - "  

I 0  

0 9  

Y 

0 8  

o 5 11 

. . . . . .  o ° °  . . . .  

~ 0 1 9  

- -  O a 6  

- Oa4 

0 ~ 2  

(d) 

0 6  0 O~ 0 2  0 3  0.4 0 5  0 6  

( g )  x 

IO  

- ~ -os . . . .  -oso3 ~ ,  , ~ o ~ o 3  

o o  

0 4 2  
0 .8 ,  0 5  '0 49 

0.(~5 0 I0 O.'t5 0120 0 2 5  030  0 005 0 I0 0.15 0 20 025  050 

* (h) x 

FIG. 1. The streamlines ~ in the field of the calculated module for various fin sizes 0 and fin spacings L : 
a ,b ,c ,d - -O=O.9;e , f ,g ,h - -O=O_8;a ,e - -L=  1.5; b , f - -L = 1;c, d--L = 0 .6 ;d ,h - -L  = 0.3. 

as that for the flow in a smooth tube_ Viscosity 
increases monotonical ly  from solid surfaces towards 
the axis. The maximum viscosity v . . . . .  is achieved on 
the flow axis. Just as k . . . .  the value o f  v,.,,a~ grows 
nearly proportionally to the fin size and slightly 
reduces with a decrease in the fin spacing. 

Now,  evaluate the hydraulic resistance of  a tube 
with uniformly arranged fins-diaphragms_ In a per- 
iodic flow the hydraulic resistance is determined by the 
module-length-averaged dimensionless pressure gradi- 
ent fl_ Figure 4(a) plots the relative value o f  fl/flo 
vs the spacing between discs L for two adopted fin 
sizes. The quantity flo denotes the hydraulic resistance 
coefficient o f  a smooth tube, which is found from the 
Blasius equation flo = 0.3164/[4(2Re)°25] - It must be 

noted that for L = 0 with the non-dimensionalization 
method assumed, the ratio fl/flo is defined as 1/0 4:5. 
With increasing L an abrupt rise o f  hydraulic resist- 
ance is observed despite the fact that at small L, as 
was remarked above, the main flow is deformed little 
and it is similar to that in a tube of  radius decreased 
by 0 times. This is evidently associated with intense 
flow turbulization on the sharp fin edges. The 
max imum value o f  fl/flo is attained at the relative fin 
spacing L/(l  -O)  of  the order o f  7. A further increase 
in L leads to a gradual decrease in the hydraulic 
resistance. In order to validate the statement that 
hydraulic resistance is closely bound up with the flow 
turbulization on sharp edges, Fig. 4(a) plots the rela- 
tive increase in the max imum turbulent kinetic energy 
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in a finned tubed (k/ko)~,x- Here k0 . . . .  is the max imum 
turbulent  energy in a smooth  tube ; ko . . . .  g 6.5 x 10 
at Re = 105_ The  character  of  the var ia t ion  in the 

curves for [J/fin and (k/ko} .... is identical 
It is of  interest  to note tha t  the hydraulic  resistance 

of  a tube with f ins -d iaphragms  can possess abnorma l  
propert ies  in the case of  a laminar  flow. The curves 
for fl/flo at Re = 100, gwen in Fig. 4(b), demons t ra te  
that,  at some values of  0 and L, the hydraulic  resist- 
ance can even decrease as against  that  in a smooth  
tube. 

Thermal problem 
This section presents the analysis of  the impact  of  

the geometric parameters  (L and 0) on the thermal  
characterist ics of  the flow. Calculat ions  are carried 

out  for a single Reynolds n u m b e r  Re = 105 and two 
Prandt l  numbers  Pr = 0.7 and Pr = 7.0 typical of  air 
and water. 

Figure 5 gives the fields of  the dimensionless tem- 
perature  0 at  Pr = 0.7 for two values of  the geometric 
parameters  L and 0. The isotherms are drawn with 
equal tempera ture  steps_ In the large par t  of  the near- 
axis flow region, the temperature  changes inconsider- 
ably. The greatest temperature  deformat ion  of  the 
flow is observed in the vicinity of  the wall of the tube 
and fin in the area of  vortex format ion.  The  position 
of the isotherms shows that  the tempera ture  decreases 
to the u tmost  on the windward fin side, not so greatly 
along the tube surface, and the min imum rate of  tem- 
perature  decrease takes place on the leeward fin side ; 
here, in the direct ion of  the fin edge, the temperature  
gradients  on its surface increase. With the var ia t ion in 
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the parameters  L a n d  0, the charac ter  of  tempera ture  
dis t r ibut ion over the near-wall region is mainta ined.  
With an increase in the Prandt l  n u m b e r  and with the 
isotherm pa t te rn  being preserved, the flow tem- 
perature equal izat ion occurs, and the temperature  
gradients  outside the laminar  sublayer decrease due 
to the fact that  the role of  convective heat  t ransfer  
becomes more essential. 

An idea of  the charac ter  of  var ia t ion  of  the par- 
ameter  (which is the relative magni tude  of  the 
longitudinal  gradient  of  the mean-weighted tem- 
perature defect Tb-- T,,) along the calculated region is 
given by the plots of  Fig. 6. The character  of  var ia t ion 
of  A is control led by the vortex s t ructure  of  the flow. 
The value of  A decreases abrupt ly  in the region of  
flow separat ion behind the fin. In the zone, where the 
flow is a t tached to the wall, the pa ramete r  A grows 
In this case, with a decrease in the module  size and  
with an increase in the fin size, the non-un i formi ty  of  
var iat ions in A gets more  pronounced .  

The obta ined  solut ion to the energy equa t ion  allows 
a de te rmina t ion  of  the heat t ransfer  coefficient ~, 
introduced as a rat io of  the specific heat  flux on the 

tube surface to the mean-weighted tempera ture  at the 
given section ~ = q ~ / ( T , , . - T h ) .  The dimensionless  
heat t ransfer  coefficient, i.e. the Nusselt  n u m b e r  
Nu = rtR/}., is de termined in terms of  the dimen- 
sionless tempera ture  gradient  f rom the equat ions  

Nu = (~30/~).),,. ; Nu = (~O/~.v + A0),, 

for hor izonta l  and vertical surfaces, respectively. Fig- 
ure 7 plots the var ia t ion in the local Nusselt  n u m b e r  
along the tube surface related to the Nusselt  n u m b e r  
Nu,  for the flow in a smooth  tube at the same par- 
ameters  Re and Pr. The latter is obta ined  from the 
equat ion 

Nu = 0.0115(2Re) ° "Pr TM. 

The Nusselt  n u m b e r  is m in imum in the vicinity of  the 
fin in the stalling zone. In all the var iants  considered,  
the relative Nusselt  n u m b e r  is smaller than unity. The 
largest Nu is observed in the region of  the flow at tach-  
ment  to the wall. A compara t ive  analysis of  the cal- 
culated var iants  disclosed that  the max imum enhance-  
ment  of  heat  t ransfer  occurs at the fin spacings of  the 
order  of  7-8 fin heights, i.e. at the distance approach-  
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FIG. 7. A variation in the Nusselt  number Nu along the tube surface in the calculated module  : a - - 0  = 0.9, 
I - -L = 0.3, 2--L = 0.6. 3--L = 1.0, 4 ~ L  = 1 . 5 : b ~ 0  = 0.8. I - -L = 0.3.2--L = 0.6, 3--L = 1.0. 
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ing the length of  the stalling zone of the flow past a 
single fin. In this case, the heat transfer enhancement  
along the module length is, on the average, larger by 
1.2 times at 0 = 0.09 and by 1.7 times at 0 = 0.8 in 
comparison with a smooth tube. The minimum heat 
transfer coefficient on the tube surface is characteristic 
of  small fin spacings (curves I in Figs. 7(a), (b)). For  
large fins and small fin spacings, the heat transfer 
coefficient can become even smaller than that in a 
smooth tube. It should be noted that the hydraulic 
resistance excess in the case of  a finned tube as com- 
pared with a smooth tube is many times larger than the 
possible heat transfer enhancement  in all calculated 
variants. Self-similarity of  the local and module-aver- 

aged heat transfer coefficient with respect to the 
Prandtl  number  is confirmed by calculations. The 
Prandtl  number  exponent  in the dimensionless 
relation is equal to 0.3. 

In conclusion, consider the trends or variation of  
the mean-weighted temperature along the module 
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FIG. 8. A variation in the mean-weighted temperature along 
the module length- 1--0=0.8 ,  P r = 0 . 7 ;  2 - - 0 = 0 . 9 .  

Pr = 0.7:3--0 = 0.8, Pr = 7 .0 :4~0  = 0.9, Pr = 7.0. 

length, which is determined by the function G : 

G = ( T h -  T, , ) , . -L/(Tb - T,,.), = 0. 

The value of  G is computed in terms of  the function 
A from the equation 

Figure 8 presents a plot of  G as a function of  the fin 
spacing L. The relative temperature decrease Th-- T~ 
grows with an increase in L and in the fin size I - 0 ,  
as well as with a decrease in the Prandtl  number. 

R E F E R E N C E S  

I. J. Rowlay and S. V. Patankar, Analysis of laminar flow 
and heat transfer in tubes with internal circumferential 
fins, Int. J. Heat Mass Trans[-er 27, 553 560 (1984). 

2. B. W. Webb and S. Ramadhyami, Conjugate heat transfer 
in a channel with staggered ribs, Int. J. Heat Mass Trans- 
. /erZ$,I679 1687(1985). 

3. A. T. Prata and E. M. Sparrow, Heat transfer and fluid 
flow characteristic for an annulus of periodically varying 
cross-section, Numerical Heat Tran.~fer '7, 285 304 (1984). 

4. I. A. Belov and L. I. Shub, Study of fluid flow in a pipe- 
line with moving containers based on numerical solution 
of Navier Stokes and Reynolds equations. In Intro- 
duction to Aerodynamics q[' Container Pipe-line Trans- 
portation, pp. 18-40. Izd. Nauka. Moscow (1986). 

5. L. I. Shub, Calculation of turbulent vortex structures in 
a flow past a set of discs in a tube. In Tranffer Processes 
in Turbulent Flows, pp. 49-58. ]zd. ITMO AN BSSR. 
Minsk (1988). 

6. S. V. Patankar, Numerical Heat Tran.~/br and Fluid Flow. 
Hemisphere Publishing Corporation, New York (1980). 

7. S. V. Patankar, C. K. Liu and E. M. Sparrow. Fully 
developed flow and heat translier in ducts having stream- 
wise-periodic variations of cross-section area, J. Heat 
Transfer 99, 180-186 (1977). 


